

CMPT 354 Database Systems I

Chapter 1 – Introduction

SFU - CMPT 354 - Zinovi Tauber

Course Textbooks

- Required Text:
 - Database Systems the Complete Book / Molina, Ullman and Widom, Prentice Hall 2002.
- Recommended Text:
 - Database Systems an application-oriented approach (second edition) / Kifer, Bernstein and Lewis, Addison Wesley 2004.
 - Database Management Systems (third edition) / Ramakrishnan and Gehrke, McGraw-Hill 2003.

Course Outline

- E-R Diagrams, UML Class modelling
- Relational Model, Normalization
- Relational Algebra
- SQL Language
- Constraints and Triggers
- Database Application Development
- Object Oriented and Object Relational Databases
- XML, XPath, XQuery, XML Schema
- Advance topics:
 - Data Mining
 - Multimedia Databases

Database Examples

University systems

Multimedia web search

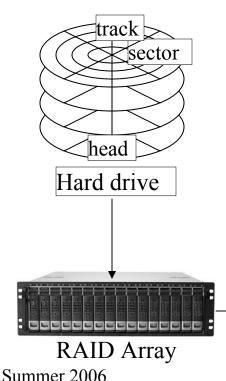
Bank transactions

	Buy Sell	My eBay	Community	Help		
	Listed in category:	Listed in category: Sports Mem, Cards & Fan Shop > Fan Apparel & Souvenirs >				
Robert Kraft	's 2005 New Er	igland Patr	iots Super l	Bowl Ring	1	
Bidder or seller	of this item? Sign in	for your status				
	Current bid:	US \$3,050.00	,	Seller inf	ormation	
		Place Bid >		Putin_on_the_ritz (42 😭		
	Time left:	5 days 3 hou 7-day listing, Jul-04-05 12:0	Ends	Feedback Score: 42 Positive Feedback: 100% Member since Jan-07-04 Safe Buying Tips		
	Start time:	Jun-27-05 12:	09:57 PDT			
	History:	21 bids				
	High bidder:	User ID kept	private			
	Item location:	Moscow, Ru	ssia		ne ouying rips	

E-bay

Summer 2006

SFU - CMPT 354 - Zinovi Tauber


The Need for Databases

- <u>Database</u> any conceptual collection of data that persists over long time.
- <u>DBMS (Database Management System)</u> A system that facilitates Database operations.
 - 1. Persistent Storage: improving upon OS concepts for storing and accessing a large amount of data.
 - 2. Programming Interface: ADTs, and higher level languages.
 - 3. Transaction management: Ensure data modifications are allowed and handled properly.

Persistent Storage

- How are files stored on disks?
- How to search for database information on disk?

- Seek time is expensive.
- All probable data should be read together.
- FAT helps find files but not data, need to index data.

SFU - CMPT 354 - Zinovi Tauber

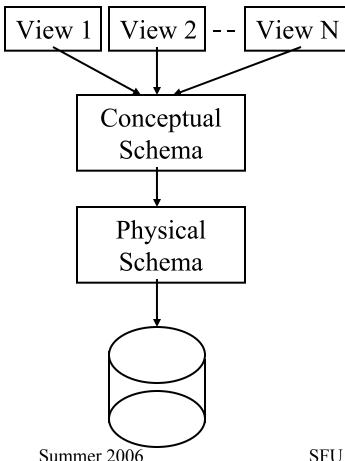
Programming Interface

- What if a database object is added another attribute? What if the database system needs to be replaced altogether?
- How to let application designer reuse the DBMS?
- How to facilitate easy search of the database?
 - DDL (Data Definition Language)
 - DML (Data Manipulation Language) / Query Language
 - SQL Example: Select balance From bank_accounts Where account_no = 10293847
 SEU - CMPT 354 - Zinovi Tauber

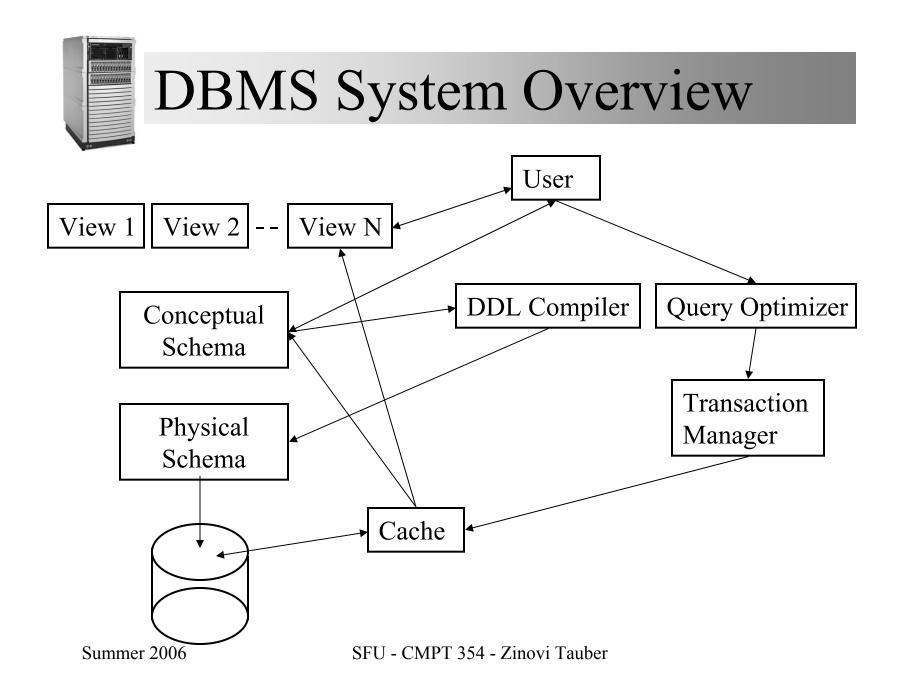
Transaction Processing

- How to handle multiple people trying to modify the database at once?
- How to make sure data in the system is consistent?
- How to answer queries efficiently?
- How to recover from system crashes?
- How to assure access only to authorized individuals?
 - DBMS are designed to handle all transactions issues automatically.

• However, it is the responsibility of the DB designer and application programmer to program the DBMS properly.


Summer 2006

•


SFU - CMPT 354 - Zinovi Tauber

Levels of Abstraction

- Views 1..N define some users' view of the data – <u>External</u> <u>Schema.</u>
- <u>Conceptual Schema</u> (or logical schema) a logical design of the database, specified in DDL.
- <u>Physical Schema</u> The actual data structures stored on disk, and indices for searching. User assists only.

Database Design

Similarly to software engineering, a database design requires:

- 1. Requirements analysis.
- 2. High level conceptual design
 - Most commonly ER Diagram, but UML possible.
- 3. Logical relational schema design
 - Convert conceptual design to relational schema.
- 4. Physical level optimization and constraints specification
- 5. Assigning access permissions

Transactions Overview

- A <u>transaction</u> is a sequence of database operations performing *one logical operation*.
- Transactions must satisfy the ACID principles:
 - *Atomicity*: Either the entire transaction must be executed or non of it.
 - *Consistency*: After the transaction executed the database must remain in a **consistent state**.
 - *Isolation*: The transaction must perform as in a single user environment.
 - *Durability*: Completed transactions are never lost.

Consistency

- A Database is in <u>consistent state</u> (or simply consistent) if none of its data violates the system requirements, that is, the real-world allowable states.
- A transaction violating consistency is not allowed to *commit*.
- Main consistency checks constraints:
 - Integrity (Uniqueness, Referential integrity)
 - Triggers and Assertions

Isolation

- Transaction <u>isolation</u> is a requirement that transaction results are not interfered by other concurrent transactions.
- Can accommodate multiple transactions using $\underline{locks} \Rightarrow$ transaction scheduling.
- Transaction isolation via scheduling leads to a serial order of transactions (but can still execute some in parallel).

Atomicity and Durability

- <u>Durability</u> Must ensure that all committed transactions are never lost.
- <u>Atomicity</u> A system crash during a transaction can have only partly updated database. Inconsistent and worse: wrong!
- A *transaction log* is used to record transactions
 - If transaction was not complete, undo all changes using the $\log \frac{\text{rollback}}{1}$.
 - If transaction was committed and lost, redo all changes using the log.